Determining the Thermodynamic Parameters of Iron Oxide Leaching from a Nigerian Clay

Orugba Oghenero Henry¹ & Iweka Chukwuka Sunday²
¹Department of Chemical Engineering Technology
²Department of Mechanical Engineering Technology
Delta State Polytechnic, Ozoro Nigeria
E-mail: orugbahenry@yahoo.com; chukaiweka@yahoo.com

ABSTRACT

In this research, the viability of Ozoro clay and the kinetics of its dissolution in tetraoxosulphate (vi) acid has been studied. The XRF analysis carried out revealed that the local clay has 12.00% of iron oxide making it a viable raw material for the production of iron. From the heat activation process, a temperature of 800°C for a period of 1hr was discovered to be the best calcinations condition for the clay. From the process parameter study, it was found that dissolution rate of iron increased with leaching temperature, acid concentration, liquid-solid ratio and stirring speed while a decrease in iron yield was observed with increase in particle size of clay. On testing the data with the different forms of the shrinking core model, the product layer diffusion model gave the best fit and the equation generated was \(1 + 2(1 - X) - 3(1 - X)^3 = 0.0008697C^{0.608}D^{-0.5937}L^{1.195}S^{0.6409} \exp\left(-\frac{38.88}{RT}\right)t \). The activation energy was calculated to be 38.88KJ/Mol.

Key words: Clay, Leaching, Iron Oxide, Sulphuric Acid and Calcinations

Aims Research Journal Reference Format:

1. INTRODUCTION

Iron is usually produced from the hematite ore. The ever increasing demand for this ore has made it unaffordable for those countries that have little or no deposits of the ore. Several researches have been carried out to obtain alternative raw materials. Several types of clay have been found to contain considerable amount of iron in form of oxides. The results from the work of some researchers have proven most Nigerian clays to be considerably rich in iron (Alafara et al, 2005; Ogbuago et al, 2007; Lori et al, 2007; Ogbemudia et al, 2010 and Ajemba and Onukwuli, 2012). However, it is worthy of note that the extent of the dissolution reaction depends on both clay mineral type and reaction conditions, such as the clay- to-acid ratio, acid concentration, time and temperature of the reaction (Vicente et al, 1994). Panias et al, (1999) investigated the mechanism of iron oxide dissolution in aqueous oxalic acid. Ambikadevi and Lalithambika, (2000) tested the efficiencies of different kinds of organic acids in leaching iron oxide from clay and found that oxalic acid was the most efficient. Sultana et al, (2014) have also investigated the leaching of iron oxide from clay in oxalic acid and hydrochloric acid. According to Sultana et al. (2014), the shrinking core model and the progressive conversion model are the two simple models generally considered for the non-catalytic reaction of particles with the surrounding fluids and the shrinking core model is preferred for sphencial particle reaction kinetics.
Of the many different forms of the shrinking core model, the liquid film controlled model, the product layer controlled model and the chemical reaction controlled model have been identified to be the three most suitable for preliminary selection of the kinetic models (Ajemba and Onukwuli, 2012 and Sultana et al, 2014). The result of the leaching experiments is matched with a kinetic model and data from the selected model is used to determine the activation energy. The aim of this research work is to evaluate the effectiveness of the local clay in iron oxide production and identify the reaction mechanism in order to obtain the activation energy.

2. EXPERIMENTAL

2.1 Sample preparation

The local clay used in this work was obtained from Ozoro (6.24°N, 5.55°E) in Delta State Nigeria. The clay was soaked in water for two days to ease the removal of debris using the method of filtration. The clay was sun-dried for 24 hours then oven dried at 60°C for 18 hours to aggregate the particles.

2.2 Activation procedure

Though heat activation enhances the release of iron from clays, temperature and period of calcinations are key factors that must be known. In order to determine the best calcinations temperature and period of calcinations, the samples were subjected to heat treatment in a muffle furnace (model LMF-3550/120V) at different periods. The temperatures considered were 400 °C, 500 °C, 600 °C, 700 °C, 800 °C and 900 °C at different periods of 30 min, 60 min, 120 min and 180 making a total of 24 activated samples. The samples were all ground to the same particle size of 0.045mm and properly labeled and were subjected to the same leaching conditions.

2.3 Characterization

The clay was characterized using the X-ray fluorescence XRF (Model Lab-X3500) to determine the chemical composition of the clay minerals. The morphology of the clay was determined with the Scanning Electron Microscope, SEM (Model S-3700N). The iron ion content in the leached solution was analyzed with MS- Atomic Absorption Spectrophotometer (AAS).

2.4 Leaching experiment of the kinetic studies

20g of the activated clay was weighed into an already determined volume of the acid and heated in a reflux system using a magnetic stirrer (Model CTH 6500). At intervals of 15 minutes, a pipette was used to withdraw 2ml of the leaching solution from the round bottom flask. The collected sample of leach liquor was allowed to cool on standing for 20 minutes and after which, it was filtered and used for iron estimation using the AAS. The dissolution percentage of the iron in the slurry was calculated according to Orugba et al (2014) as follows:

\[
x = \left(\frac{\text{amount of Fe}^{2+} \text{in withdrawn sample}}{\text{total amount of Fe}^{2+} \text{in withdrawn sample}} \right) \times 100\%
\]

(1.0)

Where x represents the percentage of iron leached.

Experiments were performed using the activated sample to investigate the effects of the following variables on the leaching process:

Table 1. Levels of variation of the process variables.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Levels of variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size (mm)</td>
<td>0.054, 0.105, 0.25, 0.54</td>
</tr>
<tr>
<td>Acid concentration (Mol/cm³)</td>
<td>0.5, 1.5, 2.0, 3.0</td>
</tr>
<tr>
<td>Liquid-solid ratio (cm³/g)</td>
<td>4, 8, 10, 16</td>
</tr>
<tr>
<td>Stirring speed (rpm)</td>
<td>90, 360, 540, 720</td>
</tr>
<tr>
<td>Leaching temperature (°C)</td>
<td>45, 65, 85, 95</td>
</tr>
</tbody>
</table>
3. RESULTS AND DISCUSSION

3.1 Results of the characterization
The XRF analysis presented in Table 2.0 revealed that the clay is rich in silica (SiO₂), alumina (Al₂O₃) and iron oxide (Fe₂O₃) with the percentages of 41.8%, 33.90% and 12.00% respectively. Copper, nickel and manganese oxides are present in traces.
The result of SEM for the raw and activated clay samples (Figures 1.0 and 2.0) revealed that the pores appeared to open more after the activation process.

<table>
<thead>
<tr>
<th>Chemical composition</th>
<th>% composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>33.90</td>
</tr>
<tr>
<td>SiO₂</td>
<td>41.80</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>12.00</td>
</tr>
<tr>
<td>CaO</td>
<td>0.45</td>
</tr>
<tr>
<td>MnO</td>
<td>0.08</td>
</tr>
<tr>
<td>K₂O</td>
<td>5.15</td>
</tr>
<tr>
<td>Ga₂O₃</td>
<td>0.01</td>
</tr>
<tr>
<td>TiO₂</td>
<td>2.00</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.16</td>
</tr>
<tr>
<td>V₂O₅</td>
<td>0.10</td>
</tr>
<tr>
<td>NiO</td>
<td>0.21</td>
</tr>
<tr>
<td>CuO</td>
<td>0.17</td>
</tr>
<tr>
<td>Rh₂O₃</td>
<td>3.10</td>
</tr>
</tbody>
</table>

Figure 1: SEM result of the raw clay
Figure 2.0 SEM result of the activated clay

3.2 Effect of temperature and period of calcinations on iron yield
The effect of temperature and period of calcinations on iron yield is presented in Figure 3.0. At lower temperatures (around 400 and 500°C), the leaching rate was low and as the temperature rises, the rate of dissolution of iron also increased until after 800°C, a decrease was observed. On the influence of time, between 30min to one hour, there was a general increase in dissolution rate. After 1hour, the rate was generally observed to decline except for the temperature of 500°C that showed a progressive increase as time was increased. The optimum calcinations condition was found to be 800°C at 1hr.

Figure 3.0: Effect of temperature and time of calcinations on iron yield
4. EFFECTS OF DISSOLUTION PARAMETERS
The various process parameters that affect the yield of iron from the clay were investigated to study the reaction mechanism and kinetics. These process parameters include particle size of clay, acid concentration, stirring speed, acid-clay weight ratio and leaching temperature.

4.1 Effect of particle size and time on iron yield
Keeping the other parameters constant, the different particle sizes of 0.045, 0.105, 0.25 and 0.54 mm were used to study the effect of particle size and time on the yield of iron from the clay and the result is shown in Figure 4.0. It could be seen that as the particle size of clay increased, the iron yield decreased with the highest yield at 0.045mm. The rate of leaching decreased with time as the graphs appeared flatter with increase period.

![Figure 4.0: Effect of particle size of clay on iron yield](image)

4.2 Effect of acid concentration and time on iron yield
The particle size that gave the best yield was used to study the effect of acid concentration on iron yield keeping the remaining parameters constant. The concentrations used were 0.5, 1.5, 2 and 3 M. From the experimental result on the effect of acid concentration on iron yield shown in Figure 5.0, it could be seen that as the acid concentration increased, the iron yield increased with the maximum yield recorded at the highest concentration of 3.0M. Increase in concentration increased the amount of hydrogen ion in the leaching liquor which enhanced the leaching efficiency.

![Figure 5.0: Effect of acid concentration on iron yield](image)
4.3 Effect of acid-clay ratio and time on iron yield
Keeping stirring speed and leaching temperature constant and with the particle size and acid concentration that gave the highest yield, the effect of acid-clay ratio on iron yield was studied using ratios of 4, 8, 10 and 16 cm3/g. The result shown in Figure 6.0, revealed that the yield of iron increased as the ratio increased. This is due to the fact that as ratio increases, more fluid is made available to wash off iron ions from the clay.

![Figure 6.0: Effect of acid-clay ratio on iron yield](image)

4.4 Effect of stirring speed and time on iron yield
The particle size of 0.045 mm, acid concentration of 3.0 M, acid-clay ratio of 16 and a constant temperature of 65°C were maintained while varying the speed at 90, 360, 540 and 720 rpm. The experimental result of the effect of stirring speed on iron yield is shown in Figure 7.0. The yield of iron appeared to increase with increased stirring speed since stirring makes it possible for the surfaces of the solids to be opened more for proper contact with the fluid. Maximum yield was obtained at 720 rpm.

![Figure 7.0: Effect of stirring speed on iron yield](image)

4.5 Effect of temperature and time on iron yield
To determine the effect of leaching temperature and time on the yield of iron, 0.045 mm particle size, 3 M acid concentration, 16 cm3/g acid-clay ratio and 720 rpm stirring speed were used while varying the temperature at 45, 65 and 85°C. Experimental result on effect of leaching temperature on iron yield (Figure 8) revealed that as leaching temperature increased, the amount of iron dissolved in the solution increased and the highest yield was achieved at the highest temperature of 85°C.
5. KINETIC STUDIES

In the kinetics studies, the different forms of the shrinking core model were observed to fit the experimental data obtained in order to identify the reaction mechanism for comparative analysis of the leaching kinetics of iron from the clay with sulphuric acid. The various forms of the shrinking core model are as follows:

- Chemical reaction controlled model: $1 - \frac{(1 - X)^{1/3}}{t} = k_t$ (2)
- Liquid film diffusion controlled model: $1 - \frac{(1 - X)^{2/3}}{t} = k_t$ (3)
- Product layer diffusion controlled model: $1 + 2(1 - X) - 3(1 - X)^{2/3} = k_t$ (4)
- Avremi model: $\ln(1 - X) = K_A t^n$ (5)
- First order pseudo – homogenous model: $\ln(1 - X) = k_t$ (6)
- Ginstling and Brounshtein model: $1 - \frac{2}{3} (X) - \frac{2}{3} (1 - X)^{2/3} = k_t$ (7)

Each of the six kinetic models was applied to test the experimental data already plotted in Figures 4.0, 5.0, 6.0, 7.0 and 8.0 in order to determine the rate controlling mechanism. The resulting graphs are shown in Figures 9.0 through 13.0. The correlation coefficients were used as criteria to measure the fitness of the models to the experimental data. In all the processes, the product layer diffusion controlled process gave the best fits and their values were presented in Table 3.0.
Figures 9.0, 10.0, 11.0, and 12.0: Plots of $1 + 2(1-X) - 3(1-X)^{2/3}$ vs. time at different part size for iron with H_2SO_4, for different H_2SO_4 concentration, for different liquid-solid ratio, and for different stirring speed.
Figure 13.0: Plot of $1 + 2(1-X)-3(1-X)^{2/3}$ Vs time at different temperature for iron with H_2SO_4.
Table 3. Correlation coefficients of the process variables for the different shrinking core models

<table>
<thead>
<tr>
<th>Process parameter</th>
<th>Models</th>
<th>Chemical reaction</th>
<th>Liquid film diffusion</th>
<th>Product layer diffusion</th>
<th>Avremi</th>
<th>Pseudo first order</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>R²</td>
<td>R²</td>
<td>R²</td>
<td>R²</td>
<td>R²</td>
</tr>
<tr>
<td>Particle size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.045mm</td>
<td></td>
<td>0.731</td>
<td>0.743</td>
<td>0.980</td>
<td>0.712</td>
<td>0.667</td>
</tr>
<tr>
<td>0.105mm</td>
<td></td>
<td>0.732</td>
<td>0.712</td>
<td>0.978</td>
<td>0.765</td>
<td>0.692</td>
</tr>
<tr>
<td>0.25mm</td>
<td></td>
<td>0.754</td>
<td>0.739</td>
<td>0.989</td>
<td>0.743</td>
<td>0.661</td>
</tr>
<tr>
<td>0.54mm</td>
<td></td>
<td>0.712</td>
<td>0.751</td>
<td>0.995</td>
<td>0.802</td>
<td>0.671</td>
</tr>
<tr>
<td>Acid conc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5M</td>
<td></td>
<td>0.732</td>
<td>0.773</td>
<td>0.997</td>
<td>0.773</td>
<td>0.661</td>
</tr>
<tr>
<td>1.5M</td>
<td></td>
<td>0.773</td>
<td>0.743</td>
<td>0.991</td>
<td>0.743</td>
<td>0.665</td>
</tr>
<tr>
<td>2M</td>
<td></td>
<td>0.721</td>
<td>0.754</td>
<td>0.995</td>
<td>0.723</td>
<td>0.610</td>
</tr>
<tr>
<td>3M</td>
<td></td>
<td>0.743</td>
<td>0.745</td>
<td>0.976</td>
<td>0.712</td>
<td>0.623</td>
</tr>
<tr>
<td>Liquid-solid ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4cm³/g</td>
<td></td>
<td>0.754</td>
<td>0.735</td>
<td>0.993</td>
<td>0.763</td>
<td>0.637</td>
</tr>
<tr>
<td>8cm³/g</td>
<td></td>
<td>0.755</td>
<td>0.755</td>
<td>0.978</td>
<td>0.791</td>
<td>0.674</td>
</tr>
<tr>
<td>10cm³/g</td>
<td></td>
<td>0.720</td>
<td>0.762</td>
<td>0.993</td>
<td>0.788</td>
<td>0.661</td>
</tr>
<tr>
<td>16cm³/g</td>
<td></td>
<td>0.714</td>
<td>0.776</td>
<td>0.967</td>
<td>0.712</td>
<td>0.664</td>
</tr>
<tr>
<td>Stirring speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90rpm</td>
<td></td>
<td>0.722</td>
<td>0.745</td>
<td>0.983</td>
<td>0.773</td>
<td>0.647</td>
</tr>
<tr>
<td>320rpm</td>
<td></td>
<td>0.751</td>
<td>0.765</td>
<td>0.994</td>
<td>0.771</td>
<td>0.674</td>
</tr>
<tr>
<td>540rpm</td>
<td></td>
<td>0.721</td>
<td>0.772</td>
<td>0.990</td>
<td>0.781</td>
<td>0.674</td>
</tr>
<tr>
<td>720rpm</td>
<td></td>
<td>0.734</td>
<td>0.776</td>
<td>0.985</td>
<td>0.703</td>
<td>0.664</td>
</tr>
<tr>
<td>Leaching temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45°C</td>
<td></td>
<td>0.732</td>
<td>0.765</td>
<td>0.995</td>
<td>0.776</td>
<td>0.723</td>
</tr>
<tr>
<td>65°C</td>
<td></td>
<td>0.741</td>
<td>0.745</td>
<td>0.985</td>
<td>0.774</td>
<td>0.662</td>
</tr>
<tr>
<td>85°C</td>
<td></td>
<td>0.721</td>
<td>0.872</td>
<td>0.993</td>
<td>0.732</td>
<td>0.634</td>
</tr>
</tbody>
</table>

In order to determine the reaction order, the plot of the natural logarithm of the apparent rate constants against the natural logarithm of each process variable was obtained from the relation in Equation (8) and the plots were presented in Figures 14.0 through 18.0

\[
\ln(-r) = \ln K + n \ln C_A
\]

(8)

A semi-empirical model was developed from the analysis given in Equation (9) as

\[
1 + 2(1 - X) - 3(1 - X)^2 = A C_{H_2SO_4}^a b (L)^c S_d^d \exp \left(-\frac{E_a}{RT} \right) t
\]

(9)

Where,
The variables a, b, c, d were determined from the slopes of the plots (Figures 14, 15, 16, and 17) as 0.608, -0.5937, 1.19 and 0.6409 respectively while the values of A and E_a were obtained as order and slopes respectively from (Figure 18). A was obtained as 0.0008697 and E was 38.88KJ/Mol. Substituting these values into Equation (9), the dissolution of iron in Ozoro clay in H_2SO_4 could be described by the following equation
\[1 + 2(1 - X) - 3(1 - X)^2 = 0.0008697C^{0.6408}D^{-0.5937}(L)^{1.19}S^{0.6409}\exp\left(\frac{-38.88}{RT}\right)t \quad (10) \]
6. CONCLUSION

The kinetics of iron leaching from Ozoro clay which is a viable source of iron has been studied in this research. Temperature and time has been found to be very important factors influencing the thermal activation of the local clay with the highest yield at 800°C at 1hr. Increasing all the process variables increased the yield of iron oxide with the exception of particle size. The dissolution of the local clay followed the product layer diffusion model and the apparent activation energy was calculated as 38.88KJ/Mol.

Figure 18.0: Plot of ln K Vs ln 1000/T for iron with H$_2$SO$_4$

\[y = 4.675x - 7.0473 \]
\[R^2 = 0.9998 \]
REFERENCE

APPENDIX

$x =$ fraction extracted,

$K =$ rate constant

t$ = $ time

$X =$ fraction of alumina extracted

$C =$ acid concentration

$D =$ diameter of particle

$L =$ liquid-solid ratio

$S =$ stirring speed

$E_a =$ activation energy

$A =$ collision frequency

$R =$ universal gas constant

$t =$ time

$a =$ reaction order for acid concentration variation

$b =$ reaction order for particle size variation

$c =$ reaction order for liquid-solid ratio variation

$d =$ reaction order for stirring speed variation